Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,7-Dimethyl-1,8-naphthyridine

Hoong-Kun Fun, ${ }^{\mathrm{a}}{ }^{*} \ddagger$ Chin Sing Yeap, ${ }^{\mathrm{a}} \S$ Nirmal Kumar Das, ${ }^{\text {b }}$ Ajit Kumar Mahapatra ${ }^{\text {b }}$ and Shyamaprosad Goswami ${ }^{\text {b }}$

${ }^{\text {a }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\text {b }}$ Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India Correspondence e-mail: hkfun@usm.my

Received 5 June 2009; accepted 24 June 2009

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$; R factor $=0.034 ; w R$ factor $=0.098 ;$ data-to-parameter ratio $=20.2$.

The asymmetric unit of the title compound, $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2}$, contains one half-molecule with the two shared C atoms lying on a twofold rotation axis. The 1,8 -naphthyridine is almost planar with a dihedral angle of $0.42(3)^{\circ}$ between the fused pyridine rings. In the crystal, molecules are linked into infinite chains along the c axis by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, generating $R_{2}^{2}(8)$ ring motifs. In addition, the crystal structure is further stabilized by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Related literature

For applications of naphthyridines, see: Badawneh et al. (2001); Hawes et al. (1977); Gorecki \& Hawes (1977). For molecular recognition chemistry of naphthyridines, see: Goswami \& Mukherjee (1997); Goswami et al. (2001, 2005). For the preparation of 2,7-dimethyl-[1,8]naphthyridine, see: Chandler et al. (1982). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier \& Glazer (1986).

Experimental

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} & b=19.3492(4) \AA \\
M_{r}=158.20 & c=6.3089(1) \AA \\
\text { Orthorhombic, } \mathrm{I}_{2} \text { \& d } 2 & V=1635.49(5) \AA^{3} \\
a=13.3977(2) \AA & Z=8
\end{array}
$$

Mo $K \alpha$ radiation
$\mu=0.08 \mathrm{~mm}^{-1}$
Data collection
Bruker SMART APEXII CCD
area-detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.939, T_{\text {max }}=0.981$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.098$
$S=1.09$
1 restraint
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.51 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.25 \mathrm{e}^{\AA^{-3}}$
1153 reflections
$T=100 \mathrm{~K}$
$\mu=0.08 \mathrm{~mm}$
$0.57 \times 0.41 \times 0.24 \mathrm{~mm}$

15454 measured reflections 1153 independent reflections 1116 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.024$

57 parameters

Table 1
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{~N} 1^{\text {i }}$	0.93	2.56	3.4889 (9)	175
$\mathrm{C} 6-\mathrm{H} 6 \mathrm{C} \cdots \mathrm{Cg} 1^{\text {ii }}$	0.96	2.78	3.5742 (8)	140
$\mathrm{C} 6-\mathrm{H} 6 \mathrm{C} \cdots \mathrm{Cg} 2{ }^{\text {iii }}$	0.96	2.78	3.5742 (8)	140

Symmetry codes: (i) $x, y, z+1$; (ii) $-x-\frac{3}{4}, y+\frac{3}{4}, z-\frac{1}{4}$; (iii) $x-\frac{1}{4},-y+\frac{1}{4}, z-\frac{1}{4} . C g 1$ and $C g 2$ are the centroids of the $\mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 5$ and $\mathrm{C} 1-\mathrm{C} 2 / \mathrm{C} 3 A-\mathrm{C} 5 A / \mathrm{N} 1 A$ rings, respectively.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. CSY thanks the Malaysian Government and Universiti Sains Malaysia for the award of the post of Research Officer under the Science Fund grant No. 305/PFIZIK/613312. SG thanks the DST (SR/S1/OC-13/2005), Government of India, for financial support. NKD thanks the UGC, Government of India, for a research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2147).

References

Badawneh, M., Ferrarini, P. L., Calderone, V., Manera, C., Martinotti, E., Mori, C., Saccomanni, G. \& Testai, L. (2001). Eur. J. Med. Chem. 36, 925-934.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chandler, C. J., Deady, L. W., Reiss, J. A. \& Tzimos, V. J. (1982). J. Heterocycl. Chem. 19, 1017-1019.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
Gorecki, D. K. J. \& Hawes, E. M. (1977). J. Med. Chem. 20, 124-128.
Goswami, S., Ghosh, K. \& Mukherjee, R. (2001). Tetrahedron, 57, 4987-4993.
Goswami, S. \& Mukherjee, R. (1997). Tetrahedron Lett. 38, 1619-1621.
Goswami, S., Mukherjee, R., Mukherjee, S., Jana, S., Maity, A. C. \& Adak, A. K. (2005). Molecules, 10, 929-934.

Hawes, E. M., Gorecki, D. K. J. \& Gedir, G. G. (1977). J. Med. Chem. 20, 838841.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2009). E65, o1747 [doi:10.1107/S1600536809024350]

2,7-Dimethyl-1,8-naphthyridine

H.-K. Fun, C. S. Yeap, N. K. Das, A. K. Mahapatra and S. Goswami

Comment

Due to their wide applications in medicine, naphthyridines are one of the most useful group of compounds. They are used as antihypertensives, antitumor agents, immunostimulants and herbicide safeners (Badawneh et al., 2001; Hawes et al., 1977; Gorecki et al., 1977). Naphthyridines are also used as a key molecule in molecular recognition chemistry (Goswami \& Mukherjee, 1997; Goswami et al., 2005; 2001; Sheldrick, 2008). We report here the single crystal X-ray structure.

In the title compound (I), (Fig. 1), the C 1 and C 2 atoms are lying on twofold rotation axis [symmetry code: $-x,-y, z$]. The dihedral angle between the two pyridine rings is equal to $0.42(3)^{\circ}$ indicating that the 1,8 -naphthyridine is almost planar. The molecules are linked together into infinite chains by the intermolecular $\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A} \cdots \mathrm{~N} 1$ hydrogen bonds along the c axis (Fig. 2) generating $R_{2}{ }^{2}(8)$ ring motifs (Bernstein et al., 1995). The crystal structure is further stabilized by the $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 1).

Experimental

2,7-dimethyl-[1,8]naphthyridine was prepared according to the literature procedure (Chandler et al., 1982). In a sample bottle, 10 mg of compound was taken and dissolved in CHCl_{3} and by slow evaporation the crystals are formed as colorless blocks.

Refinement

All hydrogen atoms were positioned geometrically with a riding model approximation with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ and $\mathrm{U}_{\text {iso }}(\mathrm{H})$ $=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$. The rotating-group model was applied for the methyl groups. As there are not enough anomalous dispersion to determine the absolute structure, 923 Friedel pairs were merged before the final refinement.

Figures

Fig. 1. The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms. Symmetry code: (i) $-x,-y, z$.

supplementary materials

Fig. 2. The crystal packing of (I), viewed down the a axis, showing the molecules are linked along the c axis. Intermolecular hydrogen bonds are shown in as dashed lines.

2,7-Dimethyl-1,8-naphthyridine

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2}$
$M_{r}=158.20$
Orthorhombic, Fdd2
Hall symbol: F 2 -2d
$a=13.3977$ (2) \AA
$b=19.3492$ (4) \AA
$c=6.3089(1) \AA$
$V=1635.49(5) \AA^{3}$
$Z=8$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=100 \mathrm{~K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.939, T_{\text {max }}=0.981$
15454 measured reflections
$F_{000}=672$
$D_{\mathrm{x}}=1.285 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9922 reflections
$\theta=3.0-40.6^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, colourless
$0.57 \times 0.41 \times 0.24 \mathrm{~mm}$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.098$
$S=1.09$
1153 reflections
57 parameters
1 restraint

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0689 P)^{2}+0.3523 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.51 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.25 \mathrm{e} \AA^{-3}$
Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier \& Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
N1	$0.01020(4)$	$0.05928(3)$	$0.32666(9)$	$0.01333(14)$
C1	0.0000	0.0000	$0.44228(13)$	$0.01141(18)$
C2	0.0000	0.0000	$0.66711(15)$	$0.01275(18)$
C3	$0.01175(6)$	$0.06389(4)$	$0.77384(11)$	$0.01521(15)$
H3A	0.0129	0.0658	0.9211	0.018^{*}
C4	$0.02138(6)$	$0.12274(4)$	$0.65545(14)$	$0.01597(16)$
H4A	0.0289	0.1653	0.7218	0.019^{*}
C5	$0.01984(5)$	$0.11846(4)$	$0.42997(11)$	$0.01352(15)$
C6	$0.02718(6)$	$0.18360(4)$	$0.30155(15)$	$0.01878(15)$
H6A	0.0381	0.1721	0.1554	0.028^{*}
H6B	0.0819	0.2110	0.3525	0.028^{*}
H6C	-0.0338	0.2094	0.3147	0.028^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N 1	$0.0165(3)$	$0.0124(3)$	$0.0111(3)$	$-0.00003(19)$	$-0.00022(18)$	$0.00128(16)$
C1	$0.0132(4)$	$0.0123(4)$	$0.0087(4)$	$0.0005(3)$	0.000	0.000
C2	$0.0148(4)$	$0.0138(4)$	$0.0096(4)$	$-0.0002(3)$	0.000	0.000
C3	$0.0189(3)$	$0.0159(3)$	$0.0108(3)$	$-0.0010(2)$	$0.00012(19)$	$-0.0019(2)$
C4	$0.0196(4)$	$0.0138(3)$	$0.0144(3)$	$-0.0006(2)$	$0.0004(2)$	$-0.0025(2)$
C5	$0.0150(3)$	$0.0124(3)$	$0.0131(3)$	$0.0001(2)$	$-0.0002(2)$	$0.0010(2)$
C6	$0.0229(3)$	$0.0137(3)$	$0.0197(3)$	$-0.0013(2)$	$-0.0009(3)$	$0.0038(2)$

Geometric parameters ($A,{ }^{\circ}$)
$\mathrm{N} 1-\mathrm{C} 5$
$\mathrm{~N} 1-\mathrm{C} 1$
$1.3238(8)$
$1.3662(7)$
C3-H3A
0.9300
1.3662 (7)

C4-C5
1.4251 (11)

supplementary materials

$\mathrm{C} 1-\mathrm{N} 1^{\text {i }}$	1.3662 (7)	C4-H4A	0.9300
C1-C2	1.4184 (13)	C5-C6	1.5017 (10)
$\mathrm{C} 2-\mathrm{C} 3^{\text {i }}$	1.4165 (9)	C6-H6A	0.9600
C2-C3	1.4165 (9)	C6-H6B	0.9600
C3-C4	1.3678 (10)	C6-H6C	0.9600
C5-N1-C1	118.23 (6)	C3-C4-H4A	120.2
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{C} 1-\mathrm{N} 1$	115.46 (7)	C5-C4-H4A	120.2
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 2$	122.27 (4)	N1-C5-C4	122.90 (7)
N1-C1-C2	122.27 (4)	N1-C5-C6	117.83 (6)
$\mathrm{C} 3{ }^{\mathrm{i}}-\mathrm{C} 2-\mathrm{C} 3$	123.23 (9)	C4-C5-C6	119.26 (7)
$\mathrm{C} 3{ }^{\mathrm{i}}-\mathrm{C} 2-\mathrm{C} 1$	118.39 (4)	C5-C6-H6A	109.5
C3-C2-C1	118.38 (4)	C5-C6-H6B	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	118.51 (7)	H6A-C6-H6B	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.7	C5-C6-H6C	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.7	H6A-C6-H6C	109.5
C3-C4-C5	119.69 (7)	H6B-C6-H6C	109.5
C5-N1-C1-N1 ${ }^{\text {i }}$	179.65 (7)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	0.76 (8)
C5-N1-C1-C2	-0.35 (7)	C2-C3-C4-C5	-0.28 (11)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3{ }^{\text {i }}$	-0.46 (5)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	0.88 (11)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3{ }^{\text {i }}$	179.54 (5)	C1-N1-C5-C6	-177.77 (5)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	179.54 (5)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	-0.57 (13)
N1-C1-C2-C3	-0.46 (5)	C3-C4-C5-C6	178.06 (6)
C3 ${ }^{\text {i }}$ - $22-\mathrm{C} 3-\mathrm{C} 4$	-179.25 (8)		

Symmetry codes: (i) $-x,-y, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3 — \mathrm{H} 3 \mathrm{~A} \cdots \mathrm{~N} 1^{\mathrm{ii}}$	0.93	2.56	$3.4889(9)$	175
$\mathrm{C} 6-\mathrm{H} 6 \mathrm{C} \cdots \mathrm{Cg} 1^{\mathrm{iii}}$	0.96	2.78	$3.5742(8)$	140
$\mathrm{C} 6-\mathrm{H} 6 \mathrm{C} \cdots \mathrm{Cg}^{\text {iv }}$	0.96	2.78	$3.5742(8)$	140

Symmetry codes: (ii) $x, y, z+1$; (iii) $-x-3 / 4, y+3 / 4, z-1 / 4$; (iv) $x-1 / 4,-y+1 / 4, z-1 / 4$.

Fig. 1

supplementary materials

Fig. 2

